Rust
Table of Contents
Concepts
Ownership
error[E0382]: use of moved value: `s1`
--> src/main.rs:4:27
|
3 | let s2 = s1;
| -- value moved here
4 | println!("{}, world!",s1);
| ^^ value used here after move
|
= note: move occurs because `s1` has type `std::string::String`,
which does not implement the `Copy` trait
- Rust invalidates the first variable, instead of calling this a shallow copy, it’s known as a move
fn main() {
let s1 = gives_ownership(); // gives_ownership moves its return
// value into s1.
let s2 = String::from("hello"); // s2 comes into scope.
let s3 = takes_and_gives_back(s2); // s2 is moved into
// takes_and_gives_back, which also
// moves its return value into s3.
} // Here, s3 goes out of scope and is dropped. s2 goes out of scope but was
// moved, so nothing happens. s1 goes out of scope and is dropped.
fn gives_ownership() -> String { // gives_ownership will move its
// return value into the function
// that calls it.
let some_string = String::from("hello"); // some_string comes into scope.
some_string // some_string is returned and
// moves out to the calling
// function.
}
// takes_and_gives_back will take a String and return one.
fn takes_and_gives_back(a_string: String) -> String { // a_string comes into
// scope.
a_string // a_string is returned and moves out to the calling function.
}
fn main() {
let s = String::from("hello");
change(&s);
}
fn change(some_string: &String) {
some_string.push_str(", world");
}
error: cannot borrow immutable borrowed content `*some_string` as mutable
--> error.rs:8:5
|
8 | some_string.push_str(", world");
| ^^^^^^^^^^^
fn main() {
let mut s = String::from("hello");
change(&mut s);
}
fn change(some_string: &mut String) {
some_string.push_str(", world");
}
- Can only have one mutable reference to a particular piece of data in a particular scope. This code will fail:
error[E0499]: cannot borrow `s` as mutable more than once at a time
--> borrow_twice.rs:5:19
|
4 | let r1 = &mut s;
| - first mutable borrow occurs here
5 | let r2 = &mut s;
| ^ second mutable borrow occurs here
6 | }
| - first borrow ends here
At any given time, you can have either but not both of:
- One mutable reference.
- Any number of immutable references.
- References must always be valid.
fn main() {
let mut s = String::from("hello world");
let word = first_word(&s); // word will get the value 5.
s.clear(); // This empties the String, making it equal to "".
// word still has the value 5 here, but there's no more string that
// we could meaningfully use the value 5 with. word is now totally invalid!
}
fn first_word(s: &String) -> &str {
let bytes = s.as_bytes();
for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {
return &s[0..i];
}
}
&s[..]
}
fn main() {
let mut s = String::from("hello world");
let word = first_word(&s);
s.clear(); // Error!
}
17:6 error: cannot borrow `s` as mutable because it is also borrowed as
immutable [E0502]
s.clear(); // Error!
^
15:29 note: previous borrow of `s` occurs here; the immutable borrow prevents
subsequent moves or mutable borrows of `s` until the borrow ends
let word = first_word(&s);
^
18:2 note: previous borrow ends here
fn main() {
}
^
- if we have an immutable reference to something, we cannot also take a mutable reference.