Table of Contents
Overview
Reference
argmax
>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])
zeros
numpy.zeros(shape, dtype=float, order='C')
Terminology
Topics
Dimensions
>>> a = np.ones((2, 3))
>>> a
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> np.sum(a, axis=0)
array([ 2., 2., 2.])
>>> np.sum(a, axis=1)
array([ 3., 3.])
>>> np.sum(a, axis=1, keepdims=True)
array([[ 3.],
[ 3.]])
>>> np.sum(a, axis=1).shape
(2,)
>>> np.sum(a, axis=1, keepdims=True).shape
(2, 1)
Slicing and Indexing
i:j:k
where i
is the starting index, j
is the stopping index, and k
is the step (k != 0
).
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:7:2]
array([1, 3, 5])
- if the number of objects in the selection tuple is less than N , then
:
is assumed for any subsequent dimensions.
Ellipsis
expand to the number of :
objects needed to make a selection tuple of the same length as x.ndim
. There may only be a single ellipsis present.
>>> x = np.array([[[1],[2],[3]], [[4],[5],[6]]])
>>> x.shape
(2, 3, 1)
>>> x[1:2]
array([[[4],
[5],
[6]]])
>>> x[...,0]
array([[1, 2, 3],
[4, 5, 6]])
- Be careful that
x[1:2][3:4]
is not equivalent to x[1:2, 3:4]
- For the first one, both slicing(
1:2
, 3:4
) operates over the first dim, whereas for the second one, both slicing works on the first and second dim respectively.
How-to
Links